A transgenic self-incompatible Arabidopsis thaliana model for evolutionary and mechanistic studies of crucifer self-incompatibility.

نویسندگان

  • Anne C Rea
  • Pei Liu
  • June B Nasrallah
چکیده

Molecular genetic studies of self-incompatibility (SI) can be difficult to perform in non-model self-incompatible species. Recently, an Arabidopsis thaliana transgenic model was developed for analysis of the SI system that operates in the Brassicaceae by inter-species transfer of genes encoding the S-locus receptor kinase (SRK) and its ligand, the S-locus cysteine-rich (SCR) protein, which are the determinants of SI specificity in the stigma and pollen, respectively. This article reviews the various ways in which the many advantages of A. thaliana and the extensive tools and resources available in this model species have allowed the use of transgenic self-incompatible SRK-SCR plants to address long-standing issues related to the mechanism and evolution of SI in the Brassicaceae. It also presents the unexpected results of a candidate gene approach aimed at determining if genes related to genes previously reported to be involved in the SI response of Brassica and genes required for disease resistance, which exhibits many similarities to the SI response, are required for SI in A. thaliana. These various studies have provided a novel insight into the basis of specificity in the SRK-SCR interaction, the nature of the signalling cascade that culminates in the inhibition of 'self' pollen, and the physiological and morphological changes that are associated with transitions between the outbreeding and inbreeding modes of mating in the Brassicaceae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing.

The switch from an out-crossing to a self-fertilizing mating system is one of the most prevalent evolutionary trends in plant reproduction and is thought to have occurred repeatedly in flowering plants. However, little is known about the evolution of self-fertility and the genetic architecture of selfing. Here, we establish Arabidopsis thaliana as a model for genetic analysis of the switch to s...

متن کامل

Expression of distinct self-incompatibility specificities in Arabidopsis thaliana.

The interplay of balancing selection within a species and rapid gene evolution between species can confound our ability to determine the functional equivalence of interspecific and intergeneric pairs of alleles underlying reproduction. In crucifer plants, mating specificity in the barrier to self-fertilization called self-incompatibility (SI) is controlled by allele-specific interactions betwee...

متن کامل

Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana.

Self-incompatibility (SI) is the primary determinant of the outbreeding mode of sexual reproduction in the Brassicaceae. All Arabidopsis thaliana accessions analyzed to date carry mutations that disrupt SI functions by inactivating the SI specificity-determining S locus or SI modifier loci. S-locus genes isolated from self-incompatible close relatives of A. thaliana restore robust SI in several...

متن کامل

A Cryptic Modifier Causing Transient Self-Incompatibility in Arabidopsis thaliana

Breakdown of the pollination barrier of self-incompatibility (SI) in older flowers, a phenomenon known as pseudo-self-compatibility or transient SI, has been described as an advantageous reproductive assurance strategy that allows selfing after opportunities for out-crossing have been exhausted [1-9]. Pseudo-self-compatibility is quite prevalent as a mixed mating strategy in nature, but the und...

متن کامل

The role of endocytosis in the self-incompatibility response of Arabidopsis lyrata

The self-incompatibility (SI) response in crucifer plants is due to the allele-specific interaction of the S -locus receptor kinase (SRK) at the surface of papillar cells with its ligand in the pollen coat. SRK and its ligand are encoded by one unique, multiallelic S -locus. SRK is part of a large family of plant receptor kinases (PRK) that show similarities to mammalian receptor kinases regard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 61 7  شماره 

صفحات  -

تاریخ انتشار 2010